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Abstract-This is an analytical and numerical study of the buoyancy-driven horizontal spreading of heat 
and chemical species through a thud-saturated porous medium. The buoyancy effect is due to both 
temperature and concentration gradients. It is shown that when the flow is driven primarily by temperature 
gradients the approach to eventual thermal equilibrium can take place along two distinct routes, one 
dominated by convection (high Ra) effects, and the other dominated by diffusion. In the convection 
dominated regime, for example, the porous medium reaches an intermediate state of stable stratification 
(horizontal layering) before the final state of uniform temperature. It is shown also that the species 
migration processes that ride on flows driven by temperature gradients can be sorted out similarly, 
depending on whether mass convection is important. The scaling trends and estimates discovered ana- 
lytically are cont%med by extensive numerical experiments conducted in the range 10 < Ra < 103, 
0.01 < Le < 100 and 1 < L/H < 4. The distinct regimes and respective heat and mass transfer scales of the 
flows driven primarily by buoyancy due to concentration gradients are also documented. A closed form 

analytical solution is developed for the limit of infinitely shallow layers, L/H + co. 

1. INTRODUCTION 

ONE OF the most important applications of the study 
of natural convection in fluid-saturated porous media 
is in the engineering of effective methods for the dis- 
posal of waste material (the~al, nuclear, chemicat). 
This application was illustrated early by Hickox and 
Watts [I] who developed numerical solutions for the 
field affected by a point heat source, when convection 
plays a dominant role. In a subsequent paper Hickox 
[2] showed that the transient and steady state solutions 
to the small-Ra point source can be superimposed in 
order to predict the flow and temperature field around 
buried objects of more complicated geometries. The 
more general problem of buoyancy-driven dispersion 
of heat and mass from a buried source was considered 
very recently by Poulikakos [3,4]. 

Our objective in the present study is to become 
able to predict the spreading rate and time scale of a 
large finite-size region that, relative to the rest of the 
porous medium, has been contaminated by the depo- 
sition of both thermal and chemical waste. This is a 
most basic problem the counterpart of which in the 
field of ‘pure fluid’ fluid mechanics has attracted con- 
siderable attention. One modern application of the 
pure-fluid version of the problem was demonstrated 
recently by Scott et al. [S], in a wide ranging study 
of the transient heat transfer between two adjacent 
enclosures communicating in the horizontal direction. 
Another application of the porous-medium version of 
the problem concerns the subsurface migration of a 
chemical species. 

2. MATHEMATICAL FORMULATION 

Consider the two-dimensional rectangular porous 
medium sketched in Fig. 1, where the four sides are 
assumed adiabatic and impermeable. The fluid mix- 
ture that saturates the porous medium is such that the 
two halves (left and right) of the system are initially 
at different temperatures (T, and T,) and different 
concentrations of a certain constituent (C, and C,). 
The concentration C represents the number of kilo- 
grams of constituent per unit volume of fluid saturated 
porous medium. 

In accordance with the Darcy flow model and the 
homogeneous porous medium model, the con- 
servation equations for mass momentum, energy and 
constituent are [6-81 

FIG. 1. Two-dimensional isolated porous medium, with 
initial temperature and ~on~ntration differences present in 

the horizontal direction. 
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NOMENCLATURE 

C specific heat [J kg-’ K-‘1 fcl time of vertical boundary layer 

CP specific heat at constant pressure development, equation (44) 
[J kg-’ K-‘1 tc90 time scale of the end of horizontal mass 

C concentration of chemical species transfer [s] 

[kg mm31 IT90 time scale of the end of horizontal heat 
Co, C, initial concentrations, Fig. 1 transfer [s] 
AC concentration difference, CI -Co T temperature [K] 

[kg mm31 To, T, initial temperatures, Fig. 1 
D mass diffusivity [m’ s _ ‘1 AT temperature difference, T1 - To [K] 

fo,f, functions, equations (55) and (57) a, r horizontal and vertical velocity 

9 gravitational acceleration [m se21 components [m s-l] 
H height [m] uo, a0 velocity scales defined in equations (46) 
K permeability [m’] and (47) 
I horizontal displacement of the T,/To UI, 01 velocity scales defined in equations (33) 

interface in heat-transfer-driven flows and (34) 

[ml x9 Y horizontal and vertical coordinates [ml. 

lC horizontal displacement of the C,/Co 
interface in heat-transfer-driven flows 

[ml Greek symbols 

1, horizontal displacement of the C,/Co 
interface in mass-transfer-driven ; 

thermal diffusivity [m’ s-l] 
coefficient of thermal expansion [K-l] 

flows [m] Be concentration expansion coefficient 

1, horizontal displacement of the T,/T, [m’ kg-‘] 
interface in mass-transfer-driven 6 thermal penetration distance [m] 
flows [m] 60 final thickness of vertical boundary 

L horizontal length [m] layer, equation (45) 
Le Lewis number, cl/D p viscosity [kg m-’ s-l] 
N buoyancy ratio, equation (20) V kinematic viscosity [m’ s-‘1 
P pressure [Pa] P density [kg m-‘1 

4 heat transfer rate per unit length heat capacity ratio, equation (6) 

W m-9 ; porosity 

40 heat transfer rate due to secondary flow tj streamfunction [m’ s-l]. 
driven by diffusion, equation (49) 

41 horizontal convective heat transfer rate, 
equation (48) Subscripts 

Ra Darcy-modified Rayleigh number, ( )f fluid 
equation (20) 

Ra, Darcy-Rayleigh number for mass- : ;: 

scales of mass-transfer-driven flows 
solid. 

transfer-driven flows, equation (73) 
t time [s] 
tI, f2, t3> t4, t5 time scales defined in Superscripts 

equations (37) (38), (62), (64) and (68), (-) dimensionless variables used in 
respectively numerical experiments (Section 3) 

(t,r t2, t3, t4, t5Ll corresponding time scales (“) dimensionless variables used in the 
of mass-transfer-driven flows, L/H + 00 asymptotic solution 
equations (74), (76) and (78) (Section 6). 

au+!!!=, 
ax ay (1) ~;+u~+v~=D($+$) (5) 

KaP K ap 
ll= -cl= 

lJ=-- 
( > 

--+P9 
where u, v, x, y, P, T and C are the volume-averaged 

p aY 
(2,3) 

velocity components, the Cartesian coordinates, the 

a$+u~+v&%(~+$) (4) 

pressure, the temperature and the concentration. The 
symbols /.L, p and 0: represent the fluid viscosity, the 
fluid density and the thermal diffusivity of the fluid- 
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saturated porous medium (fluid+solid) divided by 
the specific heat capacity of the fluid phase alone. 
The effect of thermal dispersion is being neglected. 
Parameters K, 4 and D are the permeability, the 
porosity and the effective mass diffusivity of the con- 
stituent as it diffuses through the mixture-saturated 
porous medium. Parameter e is the heat capacity ratio 

(PA 
Q = dJ+u -4)(pc,)t 

where @c)~ is the specific heat capacity of the solid 
matrix. In the limit of sufficiently small temperature 
and concentration differences, the momentum equa- 
tions, equations (2) and (3) combine into 

where /l and PC are the volumetric thermal and con- 
centration expansion coefficients. 

The focus of the present study is on the transient 
flow, heat transfer and mass transfer phenomena that 
evolve from the initial condition sketched in Fig. 1 

u=o=O at Oix<L,O<y<H (8) 

T=T, and C=C, 

at O<~xL/2,0<y<H (9) 

T=To and C=CO 

at L/2cx<L,O<y<H. (10) 

The conservation equations were solved subject to the 
following boundary conditions : 

dT X 
u=O,~=O,~=O at x=O,L (11) 

O=o,dT=o~=o at y=O,H. ay ’ aY 
(12) 

3. NUMERICAL EXPERIMENTS 

The problem formulated in the preceding section 
was solved in dimensionless form via finite differences. 
Introducing the dimensionless variables 

(13) 

T-To . c-co f=_ ___ 
T,-T,,’ c= C,-Co (14) 

(1% 

and the dimensionless streamfunction $ = $/u 

fi= atj/ap, u^= -aSiaa (16) 
the dimensionless form of the conservation equations 
is 

V’$ = -Ra ($N$j (17) 

(18) 

(19) 

af @ah v2f 

z+a(a,g)= 
4ae I a@,&)_ 
Q at a(u) 

Lt- ’ V’C 

where V2 = a2/di2+ a’/a$‘. The dimensionless groups 
Ra, N and Le appearing in these equations are the 
Darcy-modified Rayleigh number based on height, 
the buoyancy ratio and the Lewis number 

Ra = JWWT, - To) ) NJcG-co) 
UV fl(T,-T,,) ’ “=%’ 

(20) 

The dimensionless initial and boundary conditions in 
the streamfunction formulation are 

$=O at O<.?SL/H,O<~<l (21) 

F=e=l at O<.?-cL/(2H),O<j<l (22) 

f=e=O at L/(2H)<Z<L/H,O<P<l 

(23) 

and 

J=o, $0, g= 0 at i = 0, L/H (24) 

$=O, g=O, g=O at p=O,l. (25) 

The numerical scheme consisted of approximating 
all the spatial derivatives at the interior grid points by 
centered finite differences. The two-step alternating 
direction implicit method (ADI) was used in order to 
calculate from equations (18) and (19) the temper- 
ature and concentration distributions. The stream- 
function was then calculated with equation (17) 
using the successive overrelaxation method [9]. Each 
iteration step consisted of (1) separately solving equa- 
tions (18) and (19) for p and c using the latest $, and 
(2) updating the $ field by solving equation (17). Once 
the temperature and concentration field solutions had 
converged, the convergence of the flow field $ was 
guaranteed because equation (17) is linear and the 
source term depends only on F and e. The numerical 
values of ri and e on the four boundaries were cal- 
culated using the three-node approximation of the 
gradient normal to the wall. The numerical work of 
updating the streamfunction field was repeated until 
the changes in $ at every node became small enough 
to satisfy the convergence criterion 

(26) 

All the numerical solutions reported in this paper 
were obtained using a uniform grid in which 40 lines 
covered a length H (e.g. a grid of 40 x 40 lines in a 
square domain, H/L = 1). Extensive numerical accu- 
racy tests of the type exhibited in Fig. 2 indicated that 
the fineness of the chosen grid is adequate. Figure 2 
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t” 
FIG. 2. Numerical accuracy test showing the diminishing 
effect of grid size : the evolution of the average temperatures 
of the left and right halves of the porous medium (N = 0, 

Ra=100,H/L=l,$/a=l). 

shows a typical example of the evolution of the aver- 
age temperatures computed for the original left and 
right halves of the rectangular system (the definition 

of i;,rr and fr,rht is presented in the next section). 

4. THE APPROACH TO THERMAL 

STRATIFICATION BY CONVECTION 

The interplay between the five dimensionless groups 
that appear in the above problem statement (Ra, Le, 

N, H/L, ~/CT) is responsible for the diversity of flow, 
heat and mass transfer regimes that rule the eventual 
approach to thermal and chemical equilibrium. The 
mission of what follows is to sort out these regimes 
and to identify in each case the proper time scales of 
approach to equilibrium. Following the nomenclature 
developed for natural convection with combined 
buoyancy elects in porous media (ref. [8], pp. 335- 
338), we first focus on ‘heat-transfer-driven flows’ in 
which the buoyancy effect is due solely to temperature 

gradients (N = 0). 
Figure 3 shows a representative sequence of stream- 

line and isotherm patterns in a square domain at one 
of the highest Rayleigh numbers considered in this 
study. The flow consists of a single roll the tendency 
of which is to ‘rearrange’ the fluid into a position of 
stable stratification, one in which the warm fluid that 
initially occupied the left half occupies eventually the 
upper half of the domain. The 90” turn executed by 
the mean orientation of the temperature gradient is 

illustrated by the isotherm patterns. Throughout this 
rotation the temperature step between the two halves 
of the fluid inventory is being smoothed away by the 
effect of thermal diffusion. This effect continues to 
manifest itself in the vertical direction as the fluid 
becomes stably stratified, i.e. when the flow dies down 
and the system tends towards an isothermal state. 

The numbers listed in vertical columns to the right 
of the streamline patterns of Fig. 3 represent the absol- 
ute values of $ corresponding to each streamline, 
such that the largest value belongs to the innermost 
streamline (the actual $ values are negative). The 

numbers listed next to each isotherm pattern denote 
the respective f values of the isotherms. The f values 
decrease from left to right or from top to bottom 
through each bundle of isotherms. The same meaning 
is attached to the 4 values listed in Figs. 4, 5 and 10. 

In the very beginning of this phenomenon (e.g. 
Z = 10U6 in Fig. 3) the flow and temperature fields are 
nearly symmetric with respect to the vertical midplane 
of the system. The time scales of the approach to 
thermal equilibrium can be determined on the basis 
of scale analysis. The f = O+ condition is one char- 
acterized by a pressure imbalance between the right 
and left halves of the system of Fig. 1. The warm fluid 
that occupies the left side has a vertical hydrostatic 
pressure gradient that is less pronounced than the 
corresponding gradient on the right (cold) side. The 
mismatch between the two dP/dy scales gives birth to 
finite pressure gradients in the horizontal direction. 
Along the top boundary the finite pressure difference 
points to the right, and its scale is 

AP _ g(P,ert - ~rlgh,)H - MVAT (27) 

where AT = T, - T,. The same pressure difference 
forms along the bottom boundary and tends to push 
fluid towards the left side of the system. What forms 
is a horizontal counterflow in which the warm branch 
flows from left to right along the top. 

One effect of this counterflow is that it tilts the 
imaginary demarcation line between the warm region 
and the cold region. This tilting effect is made visible 
by the early shift exhibited by the isotherms, especially 
in the case of relatively shallow porous domains, 
L > H (Figs. 4 and 5). If 1 is the length scale of the 
segment obtained by projecting the demarcation line 
on the horizontal direction, then I increases as the 
time increases (note that in the very beginning I = 0, 
because the demarcation line coincides with the ver- 
tical midplane). The length scale 1 represents also the 
horizontal distance over which the flow experiences 
the pressure drop BP. The horizontal velocity scale of 
this flow follows from equation (2) 

KAP 

“‘“ClF. 
(28) 

A companion result is the vertical velocity scale of the 
vertical counterflow that completes the single roll 

u,H HKAP 
fJ,---2 

I d . 
(29) 

This estimate follows from the argument that the mass 
flow rate is conserved around a roll of height H and 
length I, equation (1). 

The unknown horizontal length scale I can be deter- 
mined based on an energy conservation argument 
centered around equation (4). In the flow region I x H 
the scales of the five terms of equation (4) are, in order 

AT AT AT AT 
at, u1-, vi-, 

I H U-jFt g. (30) 
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FIG. 3. The streamline and temperature fields vs time in a heat-transfer-driven flow (N = 0, Ra = lo”, 
H/L = 1, $/a = 1). Note that the constant plines are the same as the constant i? lines when I2 = 1. 
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FIG. 4. The evolution of the heat-transfer-driven flow in a H/L = 0.49 shallow porous medium (N = 0, 
Ra = 100, #/a = 1). 

In view of the mass conservation scaling (29), namely defined in equation (20). It is clear that in the high 
u,ll N v,/H, we note that the second and third scales Rayleigh number regime considered in this study, the 
listed above (the ‘convection’ scales) are equal. This energy balance can only be between the convection 
observation becomes more visible after dividing the scale (Ro) and the thermal inertia scale (al’,&& which 
five scales by the horizontal thermal diffusion scale means 
aAT/12: using equations (28) and (29) we obtain in 112 
order (32) 

al2 
z,Ra,Ra,L A 0 

2 
(3 1) and, via equations (28) and (29) 

I/2 

where Ra is the Darcy-modified Rayleigh number 
(33) 
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FIG. 5. The evolution of the heat-transfer-driven flow in a H/L = 0.25 shallow porous medium (iv’ = 0, 
Ra = 100, C$/G = 1). 

t7H vertical direction. The ultimate effect of this process 
u,=-. 

t (34) . IS to smooth away the vertical temperature gradient 

The streamfunction scale is $ N uH, or in dimen- 
that existed at f N I,. The time scale of the vertical 

sionless terms 
thermal diffusion regime is t - aH*/cc, hence the 
dimensionless time for the establishment of the iso- 

,j N Rar’* [-i/z. (35) thermal state 

In order for equations (32b(35) to be valid, the ther- 
mal diffusion scales listed in (31) must be negligible 
relative to convection and thermal inertia, in other 

words 

Ra> k 0 
2 

or, after using equation (32) and equation (15) 

1< 1. (36’) 

The convection dominated flow described until now 
continues until the imaginary demarcation line and 
the isotherms become horizontal, If L z H, the tem- 
perature field becomes ‘stratified’ by convection when 
I has had time to become of order L. In view of 
equation (32) that time is 

L2 
I,- - 0 H Ram’ (37) 

Assuming that the I, scale estimated above is less 
than one, i.e. that criterion (36’) holds, the process of 
horizontal layering (stratification) by convection is 
followed by a regime of pure thermal diffusion in the 

“IIT ,Ll:il-P 

f* - 1. (38) 

The assumption that the 2, scale (37) is less than one 
means that the temperature field becomes stratified by 
convection (I w L) before vertical thermal diffusion 
has time to act. This assumption holds at high Ra’s 
and moderate L/H ratios, as in the numerical experi- 
ments conducted in this study. The I, < 1 assumption 
breaks down in the shallow porous medium limit 
L/H -+ co, which for steady-state convection was 
treated in refs. [IO, 111. We focus on the L/H + co 
limit in Section 6. 

5. COMPARISON WITH NUMERICAL 

EXPERIMENTS 

The trends and orders of magnitude predicted theo- 
retically in Section 4 are validated by numerical 
experiments. A crucial result is the time scale f,, which 
marks the end of the process of stratification by 
convection, that is, the end of the horizontal heat 
transfer interaction between the original left and right 
halves of the system. In order to verify the correctness 
of the I, scale (37) we first designed a method to 
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IO' IO< 
Ra 

FIG. 6. The Ra dependence of the time marking the end 
of horizontal convective heat transfer (N = 0, H/L = 1, 

4/u = 1). 

estimate the ‘end’ of heat transfer through the vertical 
midplane x = L/2. We first calculated the average 
temperatures of the original left and right halves of 
the domain 

fyi, _$, I) d.i? dj (40) 

and studied their behavior as f increases. Figure 2 
shows the symmetry of the approach to the final aver- 
age temperature of l/2 : this approach occurs within 
a characteristic time interval. Note also that the slope 
of each curve is proportional to the respective heat 
transfer interaction through the vertical midplane. 
For the sake of concreteness we defined the left-to- 
right heat exchange as being practically ‘complete’ 
when 

p,cft = 0.55 or frigh, = 0.45 (41) 

that is, when 90% of the total heat exchange has 
already taken place. The dimensionless time when the 
numerical solution met conditions (41) was labeled 

f?Yll. 
Figure 6 shows that the calculated 2,90 values 

decrease linearly with Ra, in accordance with the 
theoretical scaling law (37). This trend is particularly 
visible in the high Rayleigh number limit, which is a 
basic assumption in the foundation of the scale analy- 
sis (see equations (36) and (31)). Furthermore, the 
calculated fT9,, values are consistently of the same 
order as the 2, values provided by equation (37). 

The correctness of the 2, scale (37) is tested further 
in Fig. 7, which shows that at constant Ra the frgO 
scale increases as the horizontal extent of the medium 
increases. The theoretical trend (37) is indicated by a 
short segment of slope 2 : 1. The calculated fr9,, values 
confirm this trend only if the order of magnitude of 
I,,, is less than one, i.e. when criterion (36’) is satisfied. 
In the shallow enclosure limit criterion (36’) fails and 

0.01 - 
I 2 4 IO 

L/H 

FIG. 7. The H/L dependence of the time marking the end 
of horizontal convective heat transfer (N = 0, Ra = 100, 

c$qu = 1). 

the calculated ZT9,, values are substantially larger than 

those calculated based on equation (37). 
The overall behavior of the flow field can be tested 

through the streamfunction scaling law (35). As a 
measure of the order of magnitude of $ we took 
the streamfunction maximum cmaX, which is always 
located in the geometric center of the rectangular 
domain. Figure 8 shows that the theoretical scaling 
law (35) can be used successfully to correlate the $,,,,, 
values revealed by numerical experiments. Plotted on 
the ordinate is $,,, divided by Ra”’ : this group 
decreases as 1- ‘I2 provided ? is small enough so that 
the flow does not reach the left and right extremities 
of the rectangular domain. In other words, as was 
noted earlier, scaling law (35) is valid if ? < f,, where 
I, is given by equation (37). 

The numerical experiments that here are sampled 
through Figs. 3-5 show more than the purely ‘con- 
vective’ features that were addressed in the scale analy- 
sis of Section 4. Superimposed on the high Rayleigh 
number flow is the effect of thermal diffusion that 
begins at Z = O+ and tends to erase the demarcation 
line between the warm and cold sections of the porous 
medium. This effect induces its own ‘secondary’ flow 
which is associated with the thermal boundary layers 
that grow on both sides of the originally vertical 

: 

FIG. 8. Correlating the calculated short-time $,., values 
using the streamfunction scaling law (35). 
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demarcation line. The horizontal length scale (thick- 
ness) of this flow, 6, is dictated originally by a balance 
between horizontal diffusion and thermal inertia, 
hence 

cxt I’* 
a-- 0 c7 

(42) 

Equation (32) shows that this thermal diffusion thick- 
ness is always negligible when compared with I 

6 
- - Ra- “* < 1. 
1 (43) 

Following an argument identical to the one used by 
Poulikakos and Bejan [12] in the study of transient 
boundary layer convection in a confined porous 
medium heated from the side (see also ref. [8], pp. 
388-394) one can show that 6 reaches a terminal 
(final) value at a time of order 

fil - Ram’. (4) 

Beyond this time the b,-thin diffusion stripe along 
the demarcation line is ruled by a balance between 
horizontal diffusion and vertical convection 

I/* 

N HRa’l*. 

The velocity scales in the 6, x H region are 

u,, - ;Ra”’ 

(45) 

v. - ;Ra. (47) 

The presence of this secondary flow is most visible in 
the isotherm patterns of Figs. 3-5, not in the slender 
vertical stripe of thickness 6, and height H, but in the 
incipient horizontal ‘intrusions’ that form along the 
top and bottom boundaries. For example, the second 
f-frame of Fig. 3 shows that the tilting demarcation 
line is shaped more like the integral sign ‘l’, and that 
the upper extremity of this shape is associated with a 
horizontal intrusion layer the movement to the right 
of which accentuates (is added to) the displacement 1 
that was discussed in Section 4. The scales of these 
horizontal intrusion layers can be determined by fol- 
lowing the v0 vertical flow as it hits the top boundary 
and turns the corner [12]. They are not repeated here 
because the secondary flow has a negligible effect rela- 
tive to the instantaneous heat transfer rate between the 
two thermally distinct regions of the porous medium. 

This last assertion can be expressed analytically 
by estimating the ratio between the horizontal heat 
transfer rate associated with the convective coun- 
tertlow of Section 4 

q, - (PC~)+,HAT- kATRa”2fm”2 (48) 

and the corresponding quantity associated with the 
diffusion-driven secondary flow 

q. = kATRa”*. 

That ratio turns out to be 

(49) 

41 

G” f-“2 
(50) 

which, in view of the time criterion (37) and the 
assumption listed immediately after it, is a number 
the order of magnitude of which is greater than one. 

6. THE SHALLOW LAYER LIMIT 

The scenario painted in the preceding discussion 
and Figs. 3-5 refers to high Ra flows in layers the 
slenderness ratio L/H of which is sufficiently moderate 
so that the ?, scale (37) is smaller than one. Physically, 
f, < 1 means that the layer achieves a state of stable 
stratification as a result of convection before the strati- 
fication can be smoothed away by vertical thermal 
diffusion over the height H. The t, < 1 condition 
becomes threatened as the ratio L/H increases. Note, 
for example, the last two isotherm patterns exhibited 
in Fig. 5, for which the f, value calculated with equa- 
tion (37) is 0.1&a number the order of magnitude 
of which is not much different than one. The slope of 
the isotherms decreases through the first three pat- 
terns of isotherms, however, this trend is reversed in 
the last frame where the effect of vertical thermal 
diffusion is to rearrange the temperature field so that 
it depends mainly on longitudinal position and time. 

The features that begin to become visible in the last 
isotherm pattern of Fig. 5 are preserved by a very 
simple analytical solution that holds strictly in the 
limit L/H + co. The method of solution is identical 
to the one employed in a related problem [lo, 1 I], 
therefore, we list only the problem statement and the 
key results. We begin with a different set of dimen- 
sionless variables based on the correct scales of the 
slender layer limit, namely 

x 
_f=- 

L’ 
t= &3 9=* vL 

KsBH*(T, -To) 
(51) 

and the 9 and f variables defined already in equations 
(13) and (14). The momentum equation for heat- 
transfer-driven flow and the energy equation are 

(52) 

where E is the small parameter E = (H/L)*. For the 
series solution 

(~,~‘)=(~,;),+E(~,,),+&*(~,j?*+... (54) 

and for the boundary conditions of Fig. 1, we obtain 
in order 

f0 = f&t, t'), unknown (55) 
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The series solution is similar to the one known for 
the steady-state problem, in which the functions f,, 
fi, etc. are linear functions of x only. In the present 
problem, an additional conclusion that is reached in 
the derivation of the F, expression (57) is thatf, must 
satisfy the equation 

afo d’fo 
ar - a22 . (58) 

This conclusion follows from invoking the adiabatic 
top and bottom boundary conditions in the devel- 
opment of equation (57). The solution to equation 
(58) is obviously the solution for transient one-dimen- 
sional heat conduction in a finite medium with insu- 
lated extremities and ‘step’ initial temperature dis- 
tribution 

x sin[(2n+l)n(i-f)] 

xexp [-(2n+l)2rr2T]. (59) 

Therefore, regardless of the size of Ra (finite) and 
the presence of longitudinal counterllow, in the 
L/H -+ co limit the temperature field is the same as 
for transient longitudinal thermal diffusion. The iso- 
therms are vertical, equations (55) and (59). In the 
beginning the the temperature drop is concentrated 
near the midplane (2 = l/2), and so is the flow, equa- 
tion (56). The longitudinal extent of the temperature 
drop and flow field increases like (cct/a)” as long as 

(44 ‘I2 is smaller than L. 
The only numerical experiments that in this study 

begin to illustrate the features of convection in the 
shallow-layer limit are those presented for H/L = 0.25 
in Fig. 5. The theoretical result developed in this sec- 
tion deserves to be tested through a special series of 
numerical experiments that focus especially on the 
shallow layer geometry. The cost associated with run- 
ning small H/L cases based on the numerical scheme 
described in Section 3 did not allow us to study shal- 
low geometries with H/L values less than l/4. 

7. APPROACH TO UNIFORM CONCENTRATION 

VIA HEAT-TRANSFER-DRIVEN 

NATURAL CONVECTION 

We now turn our attention to the mass transfer 
phenomenon that rides on the heat-transfer-driven 
flow discussed until now, INI << 1. The important 
questions are ‘at what time is the medium practically 
in a state of vertical concentration stratification, or in 

a state of uniform concentration?, and ‘what par- 
ameters govern these time scales, and how ? 

In a scale analysis that is patterned after equations 
(30)-(37), we focus on the earliest stages of the flow 
(u,, u,, known) and consider the tilting of the imaginary 
interface that originally separated the C = C, domain 
from the C = C, domain. Let I, be the length scale 
of the projection of this interface on the horizontal 
direction. In the central region of length I, and height 
H, at sufficiently high Rayleigh numbers we expect a 
balance between convection and inertia, in this case, 
between mass convection and mass inertia. Guided by 
the first two terms of equaion (5) we express this 
balance as 

~~ 9” -u,- (60) 
c 

which, using equation (33), yields 

a at ( > 
I/2 

aI “-3 oRa “4’ (61) 

Therefore, in general, the position of the tilting 
concentration interface differs from that of the tem- 
perature interface, in the way that a differs from 4. 
When lc grows to be of order L, the concentration field 
becomes stratified by convection (i.e. the constant C 
lines become practically horizontal). Let t 3 be the time 
scale when I, _ L; from equation (61) we deduce that 

I$’ L2 
I,% - 00 a 

z Rae’. (62) 

At times greater than t3 the smoothing of the con- 
centration field is done by pure mass diffusion in the 
vertical direction. The time scale (f4) of this final step 
towards a state of uniform concentration is obtained 
by writing 

which in dimensionless form yields 

2, - ; Le. 

The scenario described until now holds if f3 < f4, in 
other words if 

(65) 

Or, we may reason that the above scenario holds if 
the assumed convection-inertia balance is correct, i.e. 
if vertical mass diffusion is negligible when compared 
(at a time of order t3) with horizontal convection 

It is easy to show that the restriction imposed by 
equation (66) is exactly the same as equation (65). 

When criterion (65) is not satisfied, the con- 
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centration field evolves as a set of nearly vertical con- 
stant C lines (the effect of vertical mass diffusion is 
pronounced). This phenomenon is analogous to the 
shallow-layer thermal convection limit presented in 
Section 6. Despite the presence of a counterflow, the 
final state of uniform concentration is achieved via 
pure mass diffusion in the horizontal direction. If t5 
is the time scale of this process, then the inertia- 
diffusion balance 

yields 

(67) 

One way to test the validity of these scaling pre- 
dictions is to estimate the effective time when the net 
mass transfer through the vertical midplane ceases. 
The corresponding theoretical scales are 1, for the 
convection regime, and I5 for the diffusion regime. In 
the course of one numerical experiment we can keep 
track of the gross movement of the species the con- 
centration of which is C, by calculating the average 
concentrations on the left and right sides of the ver- 
tical midplane 

^ H L/M I 

cM(f) = 2t *=. 
s s 

Qa, E, 2) d.? d? (69) ~=. 

&(a, 9, f) di d$. (70) 

The quantities behave the same way as the average 
temperatures exhibited in Fig. 2, namely, &r,(O) = 1, 
&JO) = 0 and C,,,(m) = C,,,,,(W) = l/2. Let f,,, 
represent the time when 90% of the total left + right 
mass exchange has taken place, i.e. the time when 

Clef, = 0.55 and Cright = 0.45. (71) 

Figure 9 shows the dependence off,,, on the Lewis 
number, in an experiment in which Ra is high and 
fixed. At small Lewis numbers, when the mass diffu- 
sivity D greatly exceeds the thermal diffusivity c(, the 
horizontal mass transfer is by diffusion and its time 
scale is f5. Note that &,, increases linearly as Le 
increases, which confirms the theoretical result (68). 
At high Lewis numbers fcYO is independent of Le, as 

Le 

FIG. 9. The Le dependence of the time marking the end of 
net horizontal mass transfer (Ra = 100, H/L = 1, 4/a = 1). 

anticipated in equation (62). In this range the 
left --) right mass transfer is by convection, leading 
first to a state of mass stratification (horizontal 
constant C lines) followed by pure mass diffusion in 
the vertical direction. 

The transition from a regime of horizontal mass 
convection to one of horizontal diffusion is illustrated 
in Fig. 10, in an experiment where Le decreases at 
constant Ra. In fact, the start of this sequence of 
experimental results is the set of constant f lines of 
Fig. 3, which are identical to the constant C lines 
representing the case Le = 1. Therefore, taken 
together, Figs. 3 and 10 show what happens as Le 
assumes successively the values 1, 0.1 and 0.01. The 
flow that is responsible for these patterns does not 
change from one time sequence to the next (this heat- 
transfer-driven flow is shown in Fig. 3). It is clear that 
as Le decreases the sharpness of the C,/CO dividing 
line disappears, as the phenomenon of mass diffusion 
takes over. 

8. MASS-TRANSFER-DRIVEN FLOWS 

The heat and mass transfer processes discussed until 
now were all tied to a flow driven by the buoyancy 
effect due to temperature gradients (INI << 1). The 
processes that occur in the opposite extreme (mass- 
driven flows, INI >> 1) can be studied and sorted out 
in an entirely analogous manner. This, we have done ; 
in the interest of conciseness, however, we list the main 
scales that differentiate between the various mass- 
transfer-driven regimes. The analysis consists of re- 
doing all the work that started with equation (27), 
this time recognizing the coupling between the flow 
field (driven) and the concentration field (driving). 

The initial counterhow that begins to tilt the con- 
centration interface Cl/C0 is driven by a longitudinal 
pressure difference of order (AP),,, N pgHjJC. Let 
I,,, be the length scale of the projection of the C,/C, 
interface on the horizontal direction. The scales of the 
horizontal and vertical velocity components of the 
initial counterflow are then K(AP),/(pl,) and 
KH(AP),/(pl’), respectively. 

Considering first the ‘convection’ regime, in which 
the C field is turned over and stratified by convection, 
the balance between mass inertia and mass convection 
in equation (5) suggests 

(72) 

where Ra,,, is the Darcy-modified Rayleigh number 
for mass-transfer-driven flow 

KsWcAC 
Ram = vD 

= RaLeN. (73) 

The flow rate (maximum streamfunction) of the coun- 
terhow is of order [~Ra,/(cr? Le)]‘12. The concen- 
tration field becomes stratified by convection when 
I, - L, which corresponds to the time 
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FIG. 10. The effect of Lewis number on the concentration field riding on a heat-transfer-driven flow 
(Ra = 103, H/L = 1, ~$/a = I): left sequence, Le = 0.1; right sequence, Le = 0.01. 



(74) 
or km - 1. Note further that part of this scenario is 
the assumption f3,m < 1+,, which translates into a 
‘small Lewis number’ requirement 

Note that this time scale plays the same role in mass- 
transfer-driven flows as the I, scale of heat-transfer- 
driven flows, equation (37). Going back to the inertia- 

(79) 

convection balance that was assumed in connection 
with equation (S), the above scales are valid if the 

At sufficiently high Lewis numbers the effect of 

effect of diffusion is negligible relative to convection. 
horizontal thermal diffusion dominates. The balance 

This condition translates into 
between thermal inertia and longitudinal diffusion 
suggests that thermal equilibrium is achieved at 

?<?Lt?. (75) 
t,,, - aL*/u, which in dimensionless terms means 

fs F 5.m - (UK12. 

At times greater than t,,+,, the stratification of the 
concentration field is smoothed away by the effect 9. CONCLUDING REMARKS 

of vertical mass diffusion, the time scale of which is 
&r*/D. In dimensionless terms, the time of the 

Looking back at the ground covered in this study, 

establishment of uniform concentration is 
we see an emphasis on high-Rayleigh-number flows 
in which convection plays the dominant role. This em- 

fZ,m - ; Le. 
phasis may appear to contradict the small tempera- 

(76) ture difference assumption on which the Boussinesq 
approximation of the right-hand side of equation 

The fact that t,,, must occur before t,,, means that (17) is based. We note here that the study of high 
the assumed mass-transfer-driven flow must be a high Rayleigh numbers and the formulation of equation 
Rayleigh number flow, Ra, > (L/H)2. (17) are not incompatible-after all, the bulk of what 

The analytical solution developed for the shallow has been accomplished in the field of natural con- 
layer limit (Section 6) can be derived also for mass- vection in porous media exhibits the same two 
transfer-driven flows. The important conclusion that features. According to equation (20),, even if 
follows from this extension is that the time needed for fl(T, - T,) is much smaller than one, we can think 
the establishment of a state of uniform concentration of a sufficiently tall system (H) and/or a sufficiently 
is the same as the time of longitudinal mass diffusion permeable porous matrix (K) such that Ra is con- 
over the distance L, namely, the I, scale listed in siderably greater than the threshold value required by 
equation (68). This conclusion holds for any finite a convection-dominated regime. 
Ra, and Le, strictly in the limit L/H+ co. Another interesting observation is that the hori- 

If in the very beginning there is also a temperature zontal flow described in the scale analysis of Section 
difference AT between the ‘left’ and ‘right’ halves of 4 starts with infinite velocity at t = O+ (see, e.g. the 
the porous medium, then the mass-transfer-driven scaling law for u,, equation (33)). This feature is a 
flow described above may affect the approach to ther- reflection of the Darcy flow model, that is, one result 
mal equilibrium. Consider first the case when CI is of neglecting the inertia of the fluid that seeps through 
sufficiently smaller than D, so that the initial heat the porous matrix. The effect of fluid inertia is felt 
transport through the vertical midplane is dominated precisely in the t --f 0 limit, when the fluid situated 
by convection. Let Ir represent the horizontal defor- along the vertical midplane is subjected to a finite 
mation (tilting) of the T,/T,, interface. Claiming a pressure step in the horizontal direction. In the t -+ 0 
balance between thermal inertia and thermal con- limit, the pressure difference P of equation (27) can 
vection in the 1,x H region, when the mass-transfer- only be balanced by the horizontal fluid inertia pu,‘, 
driven flow is in the convection regime, yields where up is the scale of the horizontal fluid velocity 

‘I2 N $ . 
through the pores. Relating up and the volume-aver- 

om (77) aged velocity scale through up - u/4, we conclude 
that in the t + 0 limit the u scale is time independent, 

Repeating step-by-step the analysis of Section 7, we 
u + &AP/p)“*. The time beyond which the Darcy- 

find that a state of thermal stratification is achieved 
flow scale u, of equation (33) takes over is obtained 

by convection when IT - L, which means at a time of 
by writing u - u,, in other words 

order 
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fs L2Le 
t3.m -3 jj Ra,’ 

0 The resulting time scale is t - uK/(v$*) or, in dimen- 
sionless terms 

At times greater than t,,, the heat transfer process is 
dominated by vertical thermal diffusion. The tem- 
oerature field becomes uniform at a time t 1 - - crH */cr. 

f _ KIH= 
(81) 

~~ ~~ .,*,n -- , --I $2Pr’ 
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This number can be considerably smaller than one, 
depending primarily on the smallness of K/H2. In 
conclusion, the Darcy-flow scenario of Section 4 
begins to apply starting with times Z that are as small 
as the group identified in equation (81) above. 
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REPARTITION HORIZONTALE DES DEPOTS THERMIQUES ET CHIMIQUES DANS 
UN MILIEU POREUX 

R&mn&Qn Ctudie analytiquement et numeriquement la propagation horizontale, sous influence de la 
pesanteur, d’especes thermiques et chimiques a travers un milieu poreux, sature par un fluide. L’effet de 
flottement est dO a la fois aux gradients de temperature et de concentration. On montre que quand 
l’icoulement est pilot& principalement par des gradients de temperature, l’approche dun Bquilibre ther- 
mique eventuel peut se rtaliser par deux voies distinctes, l’une dominte par des effets de convection (grand 
Ru) et l’autre dominte par la diffusion. Dam le premier regime, le milieu poreux atteint un &at intermediaire 
de stratification stable avant l’etat final de temperature uniforme. On montre aussi que les micanismes de 
migration d’esptces pour les ecoulements pilot&s par les gradients de temperature peuvent etre ranges 
similairement selon l’importance de la convection de masse.. Les tendances d’echelle et les previsions 
obtenues analytiquement sont confirmtes par des experiences numeriques faites dans le domaine 
10 i Ra < lo’, 0,Ol < Le < 100 et 1 < L/H i 4. Les regimes distincts et les tchelles de transfert de chaleur 
et de masse sont precises pour les ecoulements pilot&s principalement par les gradients de concentration. 
Une solution analytique est developpee pour le cas limite de couches infiniments peu profondes 

(L/H + co). 

DIE HORIZONTALE AUSBREITUNG VON WARME UND VON CHEMISCHEN 
SUBSTANZEN IN EINEM POROSEN MEDIUM 

Zussnnnenfassung-Die auftriebsgesteuerte Ausbreitung von W&me und von chemischen Substanzen in 
einem fluidgesattigten porosen Medium wird analytisch und numerisch untersucht. Der Auftrieb beruht 
sowohl auf Temperatur- als such auf Konzentrationsgradienten. Fur den Fall, daB die Stromung haupt- 
siichlich durch Temperaturgradienten verursacht ist, wird gezeigt, da13 die Annlherung an ein eventuelles 
thermisches Gleichgewicht entlang zweier verschiedener Pfade stattfinden kann. Der eine Weg wird durch 
Konvektionseinfliisse (hohe Ra-Zahlen), der andere durch Diffusion dominiert. Bei dem durch Konvektion 
dominierten Weg erreicht das poriise Medium zunichst einen Zwischenzustand mit stabiler Schichtung 
(horizontale Schichten) und dann erst den Endzustand mit gleichfiirmiger Temperatur. Es wird gezeigt, da8 
die Stofftransportprozesse ganz lhnlich verlaufen. Die analytischen Arbeiten werden durch umfangreiche 
numerische Experimente bestltigt, die in den Bereichen 10 < Ra i lo’, 0,Ol < Le < 100 und 1 < L/H < 4 
durchgefiihrt wurden. Eine geschlossene analytische Losung wird fur unendlich dtinne Schichten 

(L/H + co) entwickelt. 
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I-OPH30HTAJIbHOE PACl-IPEAEnEHHE BEWECTB B l-IOPHCTOtl CPEHE I-IPM 
TEPMHqECKOM L4 XHMWJECKOM OClUKAEHHki 

AEIIOTPUII~-AH~JTHTHWCKH H YncneHHo HccnenyeTcn o6ycnoeneHHoe canaMH nnaBywcTe rop&i30~- 
TanbHoe pacnpeneneHne Tenna H XHMHY~CKHX BeuecTB B HacbImeHHol ;KnnKocTbIo nopacToii cpene. 
~+&KT llJIaB)WXTH WMET MIXTO 6naronapn KBK rpanaeHTaM TehmepaTypbI, TBK B rpaneeHTah4 KOH- 
WHTp~LWl. nOKa3aH0, 'IT0 B nepBOM CJIy'Sae TenJIOBOe paBHOBeCHe MO,KeT AOCTnraTbCff 38 ‘YIeT LIeiiCT- 
BHSI AByX 'IeTKO BbIpaKCeHHbIX MeXaHH3MOB: KOHBeKWiH (npH BbICOKHX W%CJIaX Ra) Ii AH4$y3nH. 
Hanpwep, npH KOHBeKTHBHOM peaHMe, nlL%Kne 'IeM B nOpHCTOi CpeL,e yCTaHOBHTC,I OKOHSaTeJIbHOe 
paBHoMepHoe pacnpenenewie TebmepaTypbI,~ Heii Ha6JIKUaeTCa npoMencyToqHoe cocToKHae yc~ofiwi- 
Boa cTpaTn&iKamin (rope3oHTanbHoe paccnoeHwe). KpoMe Toro noKa3aH0, STO npowccbI wwpamili 
BeLWCTB BMeCTc C IIOTOKBMB, 06yCJlOBJIeHHbIMI4 rpaAHeHTaMH TeMnepaTypbI, MOXHO KJIaCCIi&iunpO- 
BaTbnOAO6HbIMme o6pa3oM B 3aBBCHMOCTH OT UHTeHCnBHOCTAKOHBeKIJnH.nOJIyYeHHbIe aHaJI&iTHWC- 
KBe 3aKOHOMepHOCTH 83MeHeHHK MaCmTa6OB B’XIH’iHH U OUeHKU nOnTBep,IU,eHbI 06m&ipHbIMH 
SHCJIeHHbIMH 3KCnepHMeHTaMn, npOBeAeHHbIMB B Wana30HaX lo< Ra < I@, o,ol < Le< 100 H 1 < 
L/H <4. BbIRBneHbI TaKXCe SeTKHe peXCHMbI H IIpeACTaBJIeHbI COOTBeTCTByIOmne MaCmTa6bI Tenno-w 
MaCCOnepeHOCa npH CB060AHOKOHBeKTHBHbIX TeSeHHIIX, BbI3bIBaeMbIX rpaAHeHTaM8 KOHUeHTpaIJHH. 
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